A Mock Theta Function for the Delta-function
نویسنده
چکیده
We define a “mock theta” function
منابع مشابه
On Ramanujan's definition of mock theta function.
In his famous "deathbed" letter, Ramanujan "defined" the notion of a mock theta function and offered some examples of functions he believed satisfied his definition. Very recently, Griffin et al. established for the first time that Ramanujan's mock theta functions actually satisfy his own definition. On the other hand, Zwegers' 2002 doctoral thesis [Zwegers S (2002) Mock theta functions. PhD th...
متن کاملA PARTITION IDENTITY AND THE UNIVERSAL MOCK THETA FUNCTION g2
We prove analytic and combinatorial identities reminiscent of Schur’s classical partition theorem. Specifically, we show that certain families of overpartitions whose parts satisfy gap conditions are equinumerous with partitions whose parts satisfy congruence conditions. Furthermore, if small parts are excluded, the resulting overpartitions are generated by the product of a modular form and Gor...
متن کاملJACOBI’S TRIPLE PRODUCT, MOCK THETA FUNCTIONS, AND THE q-BRACKET
In Ramanujan’s final letter to Hardy, he wrote of a strange new class of infinite series he called “mock theta functions”. It turns out all of Ramanujan’s mock theta functions are essentially specializations of a so-called universal mock theta function g3(z, q) of Gordon–McIntosh. Here we show that g3 arises naturally from the reciprocal of the classical Jacobi triple product—and is intimately ...
متن کاملJACOBI’S TRIPLE PRODUCT, MOCK THETA FUNCTIONS, UNIMODAL SEQUENCES AND THE q-BRACKET
In Ramanujan’s final letter to Hardy, he wrote of a strange new class of infinite series he called “mock theta functions”. It turns out all of Ramanujan’s mock theta functions are essentially specializations of a so-called universal mock theta function g3(z, q) of Gordon–McIntosh. Here we show that g3 arises naturally from the reciprocal of the classical Jacobi triple product—and is intimately ...
متن کاملTransformation Formula of the “2nd” Order Mock Theta Function
KAZUHIRO HIKAMI A. We give a transformation formula for the " 2nd order " mock theta function D 5 (q) = ∞ n=0 (−q) n (q; q 2) n+1 q n which was recently proposed in connection with the quantum invariant for the Seifert manifold.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008